Recent increases in rural water access in African countries relied predominantly on groundwater

The JMP’s online analysis tool allows water supply data to be cut by service level (safely managed, basic etc.) or facility type (piped, non-piped), as set out in their 2018 methods doc. “Piped”, W2 in their indicator list (p.4) includes all tap water classifications (p.9), i.e. both on-plot piped and off-plot kiosks or public taps. Non-piped improved, W3 in their indicator list, includes all other improved services, namely:

  1. Groundwater point sources (protected springs, wells and boreholes)
  2. Rainwater (e.g. from house roof)
  3. Packaged and delivered water (e.g. bottles, tanker trucks)

Since categories 2 and 3 form a very small proportion in rural areas in most countries, the vast majority of “non-piped improved” comes from groundwater. A lot of “piped” may do too, but that depends on the network’s sources and the data cannot be collected via household surveys [let me know if you know of data on the relative split of surface/ground water in rural African piped systems]. A shift towards on-plot piped supplies in rural areas will hopefully take place, and this may or may not involve more reliance on treated surface water.

The analysis of JMP data below came out of ideas kicked about by Richard Carter and myself as a follow-up to our 2016 paper on functionality. One day we might manage to finish the follow-up paper, but in the meantime here’s some analysis of some JMP data, followed by a few thoughts.

First, Table 1 below shows data from the JMP “world file” available here. I used that file to extract the proportion of the rural population in 2015 using different service levels and facility types for drinking* water, for the five most populous Sub-Saharan African countries. This mainly serves to bring clarity on what is included in each category in adding up to 100%.

Table 1: Access to rural water supply for drinking water in five African countries in 2015


Second, I calculated the number of the rural population in 2000 and 2015 using each of ‘piped improved’ and ‘non-piped improved’ for the same five countries (Figure 1) for Sub-Saharan Africa as a whole (Figure 2). Note that populations using an unimproved point source or surface water are not shown. The white-filled bars indicate projected total rural population in 2030 from the UN World Urbanisation Prospects 2018 database – if we achieve universal basic access by 2030 these bars would be filled with one of the two colours (remember that “basic” also implies round-trip time <30mins).

Figure 1: Rural populations in five African countries using piped and non-piped improved water.

1Figure 2: Rural population in Sub-Saharan Africa using piped and non-piped improved water.


Some analysis:

  • With the slight exception of Ethiopia, the absolute increase in the number of people using ‘piped improved’ supplies in rural areas has been relatively small (Figure 1).
  • This comes in contrast to the huge increases in all five countries in non-piped improved, also visible for Sub-Saharan Africa as a whole (Figure 2).
  • The increases in population using non-piped improved (as opposed to piped on-plot) was approximately 2x higher in DRC, Ethiopia and Kenya, 4x higher in Tanzania, and 18x higher in Nigeria. It was 2.9x higher for Sub-Saharan Africa as a whole.

As a group of facility types, “non-piped improved” has seen astonishing growth in the 2000-2015 period in these large countries and in Sub-Saharan Africa as a whole. The majority of these service types (i.e. all except rainwater and packaged/delivered water) are based on groundwater. The numerical (Figures 1 & 2) and proportional (Table 1) significance of these groundwater-based supplies, and their likely future importance, are difficult to ignore.

While it would be ideal to have piped on-plot supplies for all by 2030, this appears unrealistic given current access trends (not to mention other constraints). In other words, it is hard to see the blank 2030 bar being filled with blue, and don’t forget that the blue category includes off-plot taps/kiosks. Meanwhile, “at least basic” off-plot services for all in rural areas by 2030 appears an achievable goal (noting that “non-piped improved” is not the same as “basic” – see p.16 of the JMP methods doc). Nonetheless, achieving piped on-plot** services should be targeted for as many as people as possible, where incomes and willingness to pay are sufficient to fund operational costs to keep piped systems running.

These data show that point-source groundwater supplies are likely to remain important to 2030 and beyond. In a recent book chapter, Calow et al. (2018) show the nuance of what this means for equity in access. We would do well to note their ‘three priorities’:

  1. Invest in water resource assessment and monitoring
  2. Recognise that degrading water quality poses at least as great a risk to drinking water as over-exploitation
  3. Engage in the wider conversation about water resources management – who gets what as pressures on resources increase and climate change accelerates.


In conclusion, this post makes three points: (i) rural water supply access gains over 2000-2015 in African countries relied predominantly on point-source groundwater supplies, (ii) point-source groundwater supplies are likely to remain important to 2030 and beyond, (iii) a shift towards on-plot piped supplies in rural areas will hopefully take place, which  may or may not involve more reliance on treated surface water. However, the shift is unlikely to be fast enough such that universal access to this type of service is achievable by 2030 in rural areas of African countries.

*Surveys which underlie JMP ask about the primary source of water for drinking. Other studies have established that people use multiple water points (improved and unimproved) if available, especially for purposes other than drinking.

** Note that in some countries, a substantial proportion of non-piped improved sources are on-plot, see figure on p.29 of this JMP report on safely managed drinking water.


Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s